Structural Properties of MHC Class II Ligands, Implications for the Prediction of MHC Class II Epitopes
نویسندگان
چکیده
Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100-200 peptides per allele) to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule.
منابع مشابه
A Case of Probable MHC Class II Deficiency with Disseminated BCGitis
Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficien...
متن کاملAnalysis of polymorphism of MHC class II BuLA DRB3 exon 2 gene in North West Iranian populations of the Water buffalo (Bubalus bubalis) through PCR-SSCP
The DRB3 gene is a highly polymorphic major histocompatibility complex (MHC) class II gene and plays an important role in variability of immune responsiveness and disease resistance. In the present study, the MHC class II DRB3 gene in water buffalo (Bubalus bubalis) populations from Northwest regions of Iran was investigated through PCR-SSCP. Genomic DNA was extracted from whole blood samples c...
متن کاملTowards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes
The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC protein...
متن کاملEpitope Prediction Assays Combined with Validation Assays Strongly Narrows down Putative Cytotoxic T Lymphocyte Epitopes
Tumor vaccine design requires prediction and validation of immunogenic MHC class I epitopes expressed by target cells as well as MHC class II epitopes expressed by antigen-presenting cells essential for the induction of optimal immune responses. Epitope prediction methods are based on different algorithms and are instrumental for a first screening of possible epitopes. However, their results do...
متن کاملGeneration of T cell help through a MHC class I-restricted TCR.
CD4+ T cells that are activated by a MHC class II/peptide encounter can induce maturation of APCs and promote cytotoxic CD8+ T cell responses. Unfortunately, the number of well-defined tumor-specific CD4+ T cell epitopes that can be exploited for adoptive immunotherapy is limited. To determine whether Th cell responses can be generated by redirecting CD4+ T cells to MHC class I ligands, we have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010